
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 5, MAY 2020 3815

Efficient Solution of Electromagnetic Scattering
Problems Using Multilevel Adaptive Cross

Approximation and LU Factorization
Walton C. Gibson

Abstract— The multilevel adaptive cross approximation
(MLACA), previously described in the literature, extends the
single-level ACA with a recursive multilevel algorithm that
significantly improves compression of off-diagonal matrix blocks
resulting from electromagnetic integral equations (IE) discretized
via the method of moments (MoM). In this article, the MLACA
approach is extended and applied to a direct solution of the
MoM matrix system via LU factorization. It will be shown
through numerical experiments that the off-diagonal LU blocks
are also compressible using MLACA, yielding a compression
rate superior to the single-level ACA and a memory complexity
of O(N4/3 log N). In addition, the MLACA LU block updates
are performed in rank-reduced form, yielding a very efficient
software implementation via a Level 3 BLAS optimized for the
CPU or GPU.

Index Terms— Adaptive cross approximation (ACA), electro-
magnetic scattering, fast integral equation methods, integral
equations, matrix compression, method of moments (MoM).

I. INTRODUCTION

THE solution of electromagnetic integral equations in the
frequency domain remains one of the most accurate and

effective methods of solving realistic radiation and scattering
problems. The most popular solution technique remains the
method of moments (MoM) [1], where the sources (cur-
rents) are discretized using basis functions with unknown
coefficients, resulting in a dense matrix system. As a result,
the required storage is of O(N2) and a direct solution via LU
factorization of O(N3). In a straightforward implementation,
this approach quickly consumes all available system RAM and
CPU resources, limiting application of the MoM to problems
of small electrical size. Thus, out of necessity, the MoM
has been historically eschewed for more tractable (but less
accurate) asymptotic methods, such as geometrical optics
(GO) [2] or physical optics (PO) [3].

There have been several approaches presented in the lit-
erature that attempt to mitigate both the high storage and
computational requirements of the MoM. One is the adaptive
integral method (AIM) [4], which replaces the far-zone matrix
elements with point-like currents on a rectangular grid,

Manuscript received May 6, 2019; revised October 27, 2019; accepted
December 1, 2019. Date of publication January 8, 2020; date of current version
May 5, 2020.

The author is with Tripoint Industries, Inc., Huntsville, AL 35802 USA
(e-mail: kalla@tripoint.org).

Digital Object Identifier 10.1109/TAP.2019.2963619

allowing for acceleration of the matrix–vector product in an
iterative solver [5]. Another is the very popular fast multipole
method (FMM) [6], [7] and the multilevel fast multipole
algorithm (MLFMA) [8], which group basis functions into
spatially localized groups. During the iterative solver matrix–
vector product, matrix blocks comprising interactions between
“far” basis groups are then computed quickly using plane
wave expansions. However, iterative solvers are known to have
significant drawbacks, particularly when applied to electro-
magnetic problems. The FMM implementation is specific to
the kernel’s Green’s function and is, thus, not method-agnostic.
Additionally, the MoM system is often ill-conditioned, leading
to long iteration times, or the solver may not converge at
all. Thus, a preconditioner may be required, which has its
own setup and storage costs. Finally, having taken these
precautions, the iteration time may still be extremely long
for each right-hand side (RHS), or the method may still fail
altogether.

The methods discussed thus far exploit the fact that matrix
blocks representing the interactions between “well-separated”
basis groups are rank deficient. More recently, there has been
research made into methods for compressing and storing such
blocks in a rank-reduced form. The most naive approach is to
apply the singular value decomposition (SVD); however, the
SVD has complexity of O(N3) and requires each matrix block
to be completely filled. This is clearly undesirable for large
problems. The ACA algorithm, originally presented in [9],
is an algebraic, kernel-agnostic method for approximating
rank-deficient matrix blocks. A key element in this algorithm is
that it only requires knowledge of selected rows and columns
of the block to be compressed, that is, the entire block does not
need to be filled. It was successfully applied to electromagnetic
problems [10], where the basis functions were partitioned into
spatially localized groups, defining the block structure of the
system matrix. However, in this article, an iterative solver
was used to solve the matrix system. It was then shown [11]
that if the ACA is applied to a block-LU factorization of the
ACA-compressed system matrix, the off-diagonal LU matrix
blocks are also compressible via the ACA. The author of that
article then showed that for scattering problems with many
scattering vectors closely spaced in angle, the RHS blocks,
as well as the corresponding solution (current) blocks, are also
compressible via ACA. This use of LU factorization eliminates
the reliance on iterative solvers and is, thus, relatively immune

0018-926X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8168-5109

3816 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 5, MAY 2020

to ill-conditioned matrix problems. This approach, referred to
in this article as the “single-level ACA,” is particularly suited
to efficient computer implementation, as block updates in the
LU factorization (and RHS solutions) are performed in rank-
reduced form using a compressed matrix representation. This
technique has been successfully used in commercial MoM
solver codes, where the block matrix operations are carried out
via Level 3 BLAS operations, optimized for CPUs or high-
performance graphic processing units (GPUs).

These concepts have since been extended via multilevel
or hierarchical decomposition of the geometry and recursive
butterfly based compression schemes [12]. One such approach
was a multilevel extension of the single-level ACA, known as
MLACA, presented in [13]. In this approach, basis functions
in each matrix block are further organized into subgroups,
based on certain criteria. Blocks are then split into column
subblocks, which are compressed via ACA. Each resulting
U matrix, comprising the singular values and left-singular
vectors of each compressed subblock, are stacked together and
compressed again via ACA in a recursive butterfly scheme.
Overall compression was shown to be greatly improved at the
expense of increased calculation time; however, an iterative
solver was again used. Whether MLACA could be used to
compress the off-diagonal LU blocks in an LU factorization
was not addressed. That article also suggested that a special
reorganization of each matrix block, based on the solid angle
seen by all other matrix blocks, was needed to obtain the
reported level of compression.

A butterfly based direct solver was recently proposed
in [14]–[16], implementing a hierarchical LU factorization
compressed via a butterfly scheme. This approach does not
use MLACA to compress the MoM or LU matrix blocks,
instead being based on randomized butterfly reconstruction
schemes [17], [18]. While the claimed compression is quite
good, the proposed algorithm for the hierarchical LU factor-
ization is very complicated and it remains unclear whether this
algorithm is a candidate for GPU acceleration.

In this article, we propose a semihierarchical technique
that combines elements from the single-level ACA [11] and
MLACA [13]. In this scheme, we partition the geometry
using K -means clustering, and the MoM system matrix is
computed and compressed using butterflies via MLACA.
We then apply an algorithmically simple right-looking LU
factorization, where the off-diagonal LU matrix blocks are also
butterfly compressed using MLACA. We will show that the
K -means block subdivision scheme is sufficient for MLACA
to deliver additional compression of the MoM and LU matrix,
yielding a memory requirement of O(N4/3 log N). Finally,
we show that the proposed approach, just as in the single-
level ACA, is a excellent candidate for CPU and (particularly)
GPU acceleration using an optimized Level 3 BLAS, making
an excellent addition to existing full matrix or ACA-based
MoM solver codes.

This article is organized as follows. In Section II, we will
review the single-level ACA and block-LU factorization in
compressed form, and in Section III, we review MLACA.
Section IV comprises the core of this article, where we present
our modifications of MLACA and apply it to the block-LU

factorization. Finally, in Section V, we present several numer-
ical examples that compare and contrast compute times and
compression rates of a block-LU factorization using MLACA
to that obtained using the single-level ACA.

II. SINGLE-LEVEL ACA
It is well known that if the basis functions are partitioned

into spatially localized groups, the MoM matrix is now a
block structure where off-diagonal blocks are rank deficient.
Consider off-diagonal block Zm×n which has m rows and n
columns. Z can be decomposed via the SVD as

Zm×n = Um×m�m×nV∗
n×n (1)

where the diagonals of � comprise the singular values, and
U and V∗ contain the left- and right-singular vectors, respec-
tively. As Z is rank deficient, the singular values in � decrease
quickly and Z can be approximated as

Zm×n ≈ ZuZv = Um×kV∗
k×n (2)

where the effective rank k � m, n is chosen based on a
threshold τ of largest to smallest singular values. The use of
SVD, however, is undesirable given its computational expense
and the fact that Z must be completely filled.

The ACA described in [9] and [10] mitigates these dif-
ficulties. It is a simple, kernel-agnostic, fast rank-revealing
algorithm that successively builds up approximations of Zu

and Zv by selecting only k rows and columns from Z, until
the residual norm falls below a chosen threshold τAC A . Thus,
for small k, only a small fraction of Z needs to be computed,
and the storage requirement for Zu and Zv is now k(m + n),
versus mn for Z.

A. QR/SVD Recompression
The rows and columns of U and V as determined by ACA

are not strictly orthonormal. Therefore, significant additional
compression can be obtained by applying the QR/SVD recom-
pression prescribed in [19], which requires QR decompositions
of U and V and an SVD of size k × k. In this step, it is
usually sufficient to choose a τSV D ≈ 10 τAC A. For the single-
level ACA, compression levels above 95% are possible, which
improves further with increasing problem size. The QR/SVD
recompression step is required in MLACA.

B. Clustering
Various algorithms for clustering the basis functions have

been proposed. In [10], a recursive axis-aligned bounding-
box strategy similar to that used in the MLFMA was used,
and a “cobblestone” method was proposed in [11]. However,
we have found that simple K -means clustering based on a
target group size yields the best overall compression for the
single-level ACA.

C. Matrix Fill
In matrix filling, diagonal blocks are not compressible

and are computed and stored the usual way. Off-diagonal
blocks are approximated by ACA+QR/SVD and only the
compressed portions of those blocks are stored. To facilitate
the ACA matrix filling, the programmer provides a routine that
computes a single row or column of a matrix block.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 05,2020 at 23:59:13 UTC from IEEE Xplore. Restrictions apply.

GIBSON: EFFICIENT SOLUTION OF ELECTROMAGNETIC SCATTERING PROBLEMS 3817

Algorithm 1 Right-Looking Block-LU Factorization
1: for b = 1 to N do
2: A = Zbb − ∑b−1

s=1 [LuLv]bs[UuUv]sb

3: [LU]bb = LU(A) (scalar LU factorization)
4: for s = b + 1 to N do
5: Lsb =

[
[ZuZv]sb − ∑b−1

p=1[LuLv]sp[UuUv]pb

]
U−1

bb
6: Compress Lsb via ACA and store [LuLv]sb

7: Ubs = L−1
bb

[
[ZuZv]bs − ∑b−1

p=1[LuLv]bp[UuUv]ps

]

8: Compress Ubs via ACA and store [UuUv]bs

9: end for
10: end for

D. LU Factorization

The LU factorization comprises a right-looking block algo-
rithm, described in Algorithm 1. Although standard right-
looking algorithms found in libraries such as LAPACK [20]
factor an entire panel and update the trailing submatrix, our
algorithm updates each diagonal and its trailing row and
column sequentially. In this way, the off-diagonal LU blocks
are recompressed only once during the factorization.

Note that in steps 2, 5, and 6, the block updates operate on
full-size matrices. In step 2, the diagonal Zbb is already full,
and in steps 5 and 6, Zsb and Zbs are first expanded to full size.
The update operations, however, are very fast, as the matrix
products are performed in rank-reduced form. To illustrate,
consider the product

Lm1×n1 Um2×n2 = Lm1×k1
u Lk1×n1

v Um2×k2
u Uk2×n2

v (3)

where n1 = m2. The innermost product is performed first.
This results in

[LU]m1×n2 = Lm1×k1
u Ak1×k2 Uk2×n2

v . (4)

Which product in (4) is performed next depends on
min(k1, k2). If k1 < k2, we compute B = AUv yielding

[LU]m1×n2 = Lm1×k1
u Bk1×n2 (5)

otherwise we compute C = LuA, resulting in

[LU]m1×n2 = Cm1×k2 Uk2×n2
v . (6)

These products are performed via the Level 3 BLAS function
cgemm. The only operations in Algorithm 1 not done in rank-
reduced form are the triangular forward and back-substitutions
with U−1

bb and L−1
bb , performed via ctrsm. Highly optimized

versions of cgemm and ctrsm are available for the CPU
as well as GPU. Note that in practice, the full-size Lsb and
Ubs blocks each comprise a temporary full matrix which is
compressed via ACA and then discarded.

E. Block-RHS Solution

Monostatic scattering problems often have thousands of
incident angles and solving for each RHS vector individually
can be very time consuming. Let us instead group all the RHS
vectors into a matrix BN×NRH S , where N is the number of
unknowns and NR H S the number of incident angles. It was
shown in [11] that for problems with many closely spaced

Algorithm 2 Block-RHS Solution

1: Given LU X = B, first solve UX = L−1B:
2: for b = 1 to N do
3: Bb = L−1

bb

[[BuBv]b − ∑b−1
s=1[LuLv]bs[BuBv]s

]
4: Compress Bb via ACA and store updated [BuBv]b

5: end for
6: Then solve X = U−1[L−1B

]
7: for b = N to 1 do
8: Xb = U−1

bb

[[BuBv]b − ∑N
s=b+1[UuUv]bs[BuBv]s

]
9: Compress Xb via ACA and store [XuXv]b

10: end for

incident angles, if the ACA block grouping is applied to B,
the blocks of B, as well as the corresponding solution blocks,
are highly compressible using ACA. Thus, all right-hand sides
can be solved for simultaneously via Algorithm 2. As in the
LU factorization, all matrix products are in rank-reduced form
and efficiently carried out via the Level 3 BLAS.

III. MULTILEVEL ACA (MLACA)

MLACA is based on the concept that the degrees of
freedom (DoF) remain asymptotically constant when the
source and testing group are inversely changed in size [12].
An L-level MLACA [13] further divides basis functions in
a single-level ACA group into 2L subgroups and applies a
butterfly algorithm wherein source and testing groups are
recursively joined or split, with the ACA applied at each
level. To illustrate, let us consider an L = 2 level MLACA,
where the off-diagonal block Zm×n now comprises row and
column blocks having approximately m/2L and n/2L rows and
columns, respectively. Operations on the first level l = 0 are
depicted in Fig. 1(a). Each block column of Z is compressed
separately using ACA+QR/SVD, yielding four U and V
matrix pairs. The singular values from the recompression step
are retained in each U. The U matrices are then stacked
together to create matrix A(1)

0 , whereas the smaller V matrices,
comprising the diagonal blocks of the notional block-diagonal
matrix B(1)

0 , are fully compressed and are stored. We then
proceed as in Fig. 1(b), where we join pairwise the block
columns of matrix A(1)

0 and split the result in half row-wise.
We then recurse to level l = 1, where the block columns of
each half are compressed in the same way as on the previous
level. For each half, the V matrices are stored, and the process
repeated again until the finest level is reached, which has only
a single block row and column. After applying the ACA, the U
and V matrices are stored and the MLACA compression of Z
is complete. As the algorithm stacks together and recursively
compresses the U blocks, we refer to this as a U -type MLACA.
An error analysis of the algorithm was previously presented
in [21].

A. Matrix Fill and Storage

When filling off-diagonal blocks, the procedure is similar to
the single-level ACA, except the MoM solver now provides
an additional routine that returns partial rows of each column
block. During the MLACA recursion, upper level nodes of the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 05,2020 at 23:59:13 UTC from IEEE Xplore. Restrictions apply.

3818 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 5, MAY 2020

Fig. 1. 2-Level U -type MLACA. (a) Operations on level l = 0. (b) Operations
on level l + 1.

MLACA tree store only V matrices, whereas the leaf nodes
store both U and V. These are stored in a single array in
memory, with each node storing offsets into that array.

IV. DIRECT SOLUTION OF MLACA-COMPRESSED

MATRIX SYSTEM

We are now ready to investigate the direct solution of
the MLACA-compressed matrix system via LU factorization.
We again apply Algorithm 1 from Section II-D, where now all
off-diagonal blocks of the MoM and LU matrix compressed
via MLACA. To do this efficiently, we make several modifi-
cations to MLACA as originally presented.

A. Clustering of Subgroups

In [13], a tree-based subdivision of basis functions in angle
space, based on the solid angle of a source group seen by a
testing group, and vice versa, was used when compressing
the off-diagonal blocks with MLACA. Additionally, it was
said that this solid-angle approach is critical for the MLACA
to obtain its gains in computation complexity and memory
savings. However, this approach results in a local reordering
of the rows and columns in each block that are necessarily
different for other blocks. If using an iterative solver, this
strategy is viable, as only elements from the input and output
vectors have to be shuffled during the matrix–vector multiply
with a block. However, this causes difficulties in performing
steps 5 and 6 in Algorithm 1, as Z, L, and U would need to be
unshuffled for each matrix product so that the global ordering
was followed. This step would be very inefficient.

Fig. 2. Product of U -Type MLACA matrices.

Our approach herein is to apply the same K -means algo-
rithm used to create the single-level ACA groups. Each
group is divided in half via K -means, which are recursively
subdivided in half via K -means, and so on, until the required
depth is reached. This comprises a per-group reordering, thus
the global ordering is adjusted to match and no shuffling is
required later. During development, this strategy was com-
pared to the tree-based solid angle method when compressing
off-diagonal blocks for a variety of test geometries. It was
observed that the size of the compressed blocks differed by
less than 2% in each case, validating our approach. The
numerical examples in Section V will show that MLACA
using the proposed K -means subgroup clustering delivers
excellent compression.

B. Block Reconstruction

As before, the block updates in steps 5 and 6 of Algorithm 1
first expand Zsb and Zbs to full size. For MLACA-compressed
blocks, this is done via recursion, where nodes on level l
reconstruct their portion of the matrix Al−1 on the previous
level. On level l = 0 (the coarsest level), once A(1)

0 is available,
the full matrix is then obtained via the product

Z = A(1)
0 B(1)

0 . (7)

Operations on each level are very fast, as each recon-
struction step comprises matrix products in rank-reduced
form. When performing the updates, matrix products use
the MLACA-compressed A(1)

0 and B(1)
0 factors of the L and

U blocks. Thus, only the A(1)
0 factor (or B(1)

0 factor, see
Section IV-C) is rebuilt for L and U. We will discuss how
to perform these matrix products efficiently in Section IV-C.

C. Matrix Product and V -Type MLACA

Matrix products in the LU block updates, discussed in
Section II-D, are fast as they operate in rank-reduced form
and require only a few calls to the Level 3 BLAS. However,
consider the product LU of two U -type MLACA matrices at
level l = 0 as shown in Fig. 2. Prior to performing the product,
the compressed U-column blocks of each matrix have been
reconstructed. It is clear that the innermost product LvUu is
not efficient, as each small diagonal block of Lv multiplies
only a small portion of each Uu block column. For the 2-level
MLACA, this requires 2L = 4 cgemm calls.

This innermost product can be reduced to a single operation
if we modify the MLACA algorithm used to compress L.
Consider again the level l = 0 operations depicted in Fig. 1(a).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 05,2020 at 23:59:13 UTC from IEEE Xplore. Restrictions apply.

GIBSON: EFFICIENT SOLUTION OF ELECTROMAGNETIC SCATTERING PROBLEMS 3819

Fig. 3. V -Type MLACA.

Fig. 4. Product of V - and U -Type MLACA matrices.

If we instead compress the block rows of Z, we are presented
with the configuration in Fig. 3. The smaller diagonal U blocks
of A(1)

0 are stored, and the larger V blocks comprising B(1)
0

are paired row-wise and split in half column-wise. These left
and right halves are then recursively compressed in a manner
analogous to the U -type MLACA. We refer to this variant as
the V -type MLACA.

We now replace L in Fig. 2 with a V -type compressed
version. After first reconstructing the compressed row blocks
of in L and compressed column blocks in U, we are left
with the matrix product in Fig. 4. The innermost product now
comprises a single operation, yielding

AkL×kU = LkL×n1
v Um2×kU

u (8)

where AkL×kU is a 2L × 2L block matrix, and kL and kU
are the sum of the ranks of all the compressed subblocks in
L and U, respectively. As in (4), whether the left or right
product is performed first depends on min(kL, kU). If kL < kU,
we compute B = AUv yielding

[LU]m1×n2 = Lm1×kL
u BkL×n2 (9)

otherwise we compute C = LuA, resulting in

[LU]m1×n2 = Cm1×kU UkU×n2
v . (10)

As Lu and Vv each comprise block-diagonal matrices of 2L

blocks, the product LU is, thus, reduced to 2L+1 + 1 matrix
products. As in the single-level ACA, each product is carried
out in rank-reduced form. To ensure that all MLACA matrix
products in the LU factorization have this form, we will
compress all blocks below the diagonal using V -type MLACA,
and all blocks above the diagonal using U -type MLACA.

D. MLACA Block-RHS Solution

For problems with many right-hand sides, we again
apply Algorithm 2. All L and U blocks are MLACA

Fig. 5. Product of MLACA Matrix and ACA matrix. (a) U -type product.
(b) V -type product.

compressed; however, in this case, we will still use the
single-level ACA to compress the RHS blocks. Thus, some
matrix products in Algorithm 2 comprise products between
a U or V -type MLACA-compressed matrix and single-level
ACA-compressed matrix, as illustrated in Fig. 5(a) and (b),
respectively. In both cases, the middle product is carried out
first, yielding

CkA×kB = AkA×n1
v Bm2×kB

u . (11)

If A is U -type, whether AuC or CBv is performed next
depends on which path results in the fewest total operations.
If A is instead V -type, we perform the leftmost product AuC
first as Au is a block-diagonal matrix. This yields

Dm1×kB = Am1×kA
u CkA×kB (12)

and then finally

[AB]m1×n2 = Dm1×kB BkB×n2
v . (13)

As before, all products are performed in rank-reduced form.

V. NUMERICAL RESULTS

In this section, we will compare the performance and
accuracy of MLACA to the single-level ACA for several
scattering problems. We will first consider a series of scattering
problems of increasing electrical size, which we use to verify
that MLACA will compress the off-diagonal LU matrix blocks
while maintaining its compression gain over the single-level
ACA. We will then apply MLACA to several scattering
problems of large electrical size and confirm that its results
remain accurate.

A. MoM Solver

The numerical results in this section are computed using
our Serenity radar cross section solver, a high-performance

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 05,2020 at 23:59:13 UTC from IEEE Xplore. Restrictions apply.

3820 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 5, MAY 2020

code written in C++. In Serenity, we implement the direct
single-level ACA solution from Section II, as well as the
direct MLACA solution newly introduced in Section IV.
Serenity treats arbitrarily shaped, three-dimensional objects
using triangle surface meshes and RWG basis functions [22].
Composite conducting/dielectric objects with junctions are
fully supported.

In the examples that follow, we use two versions of Serenity:
a parallel GPU-accelerated version for shared-memory systems
and a CPU-only MPI version for distributed memory systems.
In the GPU-accelerated Serenity, near-matrix elements are
computed on the CPU and far elements on the GPU. The
LU block updates are performed on the GPU using NVIDIA
cuBLAS. All other matrix operations are performed on the
CPU using the Intel Math Kernel Library (MKL).

1) GPU Implementation: On NVIDIA GPUs, matrix prod-
ucts are most efficient if executed in large, single-kernel
launches. However, reconstruction of the coarsest-level V
and U matrices, required for MLACA matrix products, is a
recursive operation involving many small matrix products.
Rebuilding these on the GPU was found to be inefficient due
to excessive kernel launches and low CUDA core occupancy.
Thus, we instead reconstruct V and U on the CPU and upload
the results to the GPU before performing the matrix products.
This was found to much more evenly share the load between
the CPU and GPU and yielded much faster run times.

2) Use of SVD: During MLACA compression, the U and
V matrices are typically quite small in the k dimension.
On higher levels in the recursion, we found it to be faster to
simply apply the SVD directly than to use ACA+QR/SVD.

3) MPI Implementation: In our MPI implementation,
a diagonal block and all U blocks in the column above it are
assigned to a node, and the L blocks in the row to the left of
the diagonal to a different node, in a round-robin fashion. This
approach has two main goals: to evenly distribute the memory
load and to minimize MPI communication (via nonblocking
broadcast) of nonlocal blocks for the LU block updates. In this
way, only the blocks above and to the left of the diagonal are
broadcasted during the block row and column update.

B. Compute Platform

Computations in Section V-C were carried out on a Dell
Precision T7900 workstation, with dual 12-core Intel Xeon
CPUs (E5-2690 v3) at 2.6 GHz, 256 GB of RAM, and dual
NVIDIA GTX 1080 Ti GPUs, running Ubuntu Linux.

Computations in Sections V-D and V-E utilized a distributed
memory system comprising 25 nodes, each having 12-core
Intel Xeon CPUs (E5-2680 v3) at 2.50 GHz (600 total CPUs)
and 128 GB RAM, with a 10 gigabit Ethernet network fabric,
running Red Hat Enterprise Linux.

C. Conducting Spheres

We first compare the memory and CPU requirements of
the single-level ACA and MLACA, in both matrix filling
and LU factorization, for perfectly electrically conducting
(PEC) spheres of radius a ranging from 1 to 16 λ. Triangle
surface meshes were constructed with approximately 12 edges

TABLE I

PEC SPHERES: DIMENSIONS, NUMBER OF TRIANGLES, AND UNKNOWNS

TABLE II

PEC SPHERES: MEMORY (MZ , GB) AND FILL TIME (TZ , S)

TABLE III

PEC SPHERES: MEMORY (MLU , GB) AND LU
FACTORIZATION TIME (TLU , S)

per wavelength, yielding the number of triangles NT and
unknowns N listed in Table I. The target size of top-level basis
function groups was Ng = 2500 unknowns. For an MLACA
of level L, this yields finest-level group sizes of approximately
Ng/2L . For the MoM problem, CFIE is used (α = 0.5), and
τAC A = 5e−3. This τAC A was chosen so that the examples
fit in available RAM and illustrate the algorithm’s efficacy.
A much smaller value (τAC A ≤ 10−4) would be required for
an accurate solution. In this article, we only present the results
from MLACA levels up to L = 3, as the compression achieved
for levels L ≥ 4 was not significantly greater than for L = 3.

Table II summarizes the matrix fill time (TZ, in seconds)
and the memory requirements of the MoM matrix Z (MZ,
in GB). Similarly, Table III summarizes the LU factorization
time and the memory requirements of the LU matrix (MLU,
in GB). To see better the differences, we have summarized
in Table IV the percent difference (decrease) in the size of
Z and the LU matrix using MLACA versus the single-level
ACA. The additional compression obtained using MLACA is
substantial, with its effectiveness increasing with both level L
and problem size. Of particular note is that for a ≥ 4, MLACA
compresses the LU matrix blocks to a greater degree than it
does the Z blocks.

Table V summarizes the percent difference (increase) in
matrix fill time TZ and LU factorization time TLU. We have
omitted the results for a < 4 as these runs were so short
that system overhead and other effects caused large variances
in total run time. The increases in TZ are as expected, with
the additional compression steps significantly adding to the

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 05,2020 at 23:59:13 UTC from IEEE Xplore. Restrictions apply.

GIBSON: EFFICIENT SOLUTION OF ELECTROMAGNETIC SCATTERING PROBLEMS 3821

TABLE IV

PERCENT DIFFERENCE (DECREASE) IN MZ AND MLU : MLACA
VERSUS SINGLE-LEVEL ACA

TABLE V

PERCENT DIFFERENCE (INCREASE) IN FILL TIME TZ AND LU
FACTORIZATION TIME TLU : MLACA VERSUS

SINGLE-LEVEL ACA

Fig. 6. Complexity of the ACA and MLACA algorithms for PEC spheres.
(a) MZ . (b) MLU .

run time. However, the increases in TLU are far more moderate,
particularly for a = 16λ where the increase in run time is less
than 11% across all L. This suggests that while the MLACA
compression of Z blocks significantly adds to the matrix fill
time, the block updates (prior to recompression) consume the
most CPU time in the LU factorization.

In Fig. 6 are plotted the memory requirements of MZ and
MLU versus the number of unknowns. We observe that for

Fig. 7. Bistatic RCS of an 8λ dielectric sphere (� = 2.56). (a) VV-Pol RCS.
(b) HH-Pol RCS.

the problems considered, the ACA and MLACA have a com-
plexity of approximately O(N4/3 log N). This is consistent
with the complexity for a fixed discretization and increasing
frequency observed by the authors in [10].

D. Dielectric Sphere

We next consider an 8λ radius dielectric sphere with a
permittivity � = 2.56. We use the mesh for the 8λ model
from the previous section; however, there are now an equal
number of electric and magnetic basis functions, for a total
of 9 83 040 unknowns. In this case, the PMCHWT formula-
tion [1] is used to solve the MoM problem, and τAC A = 10−4.
In Fig. 7, we compare the bistatic RCS obtained from the
single-level ACA and MLACA (L = 3) to the analytical
Mie solution [23]. The results are nearly indistinguishable.
Table VI summarizes the memory requirements MZ and MLU
for the single-level ACA and MLACA (L ≤ 3). As we
have consistently observed in practice for dielectric problems,
the size of the LU matrix is approximately double that of Z;
however, the additional compression afforded by MLACA is
maintained across all levels. Table VII summarizes the corre-
sponding matrix fill times TZ and LU factorization times TLU.

E. Cone-Sphere

The last object to be considered is a conducting cone-sphere,
whose shape and dimensions are illustrated in Fig. 8. It has
several grooves cut into it along its length, which will resonate
at different frequencies. We compute the monostatic RCS at

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 05,2020 at 23:59:13 UTC from IEEE Xplore. Restrictions apply.

3822 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 5, MAY 2020

TABLE VI

8λ DIELECTRIC SPHERE: MEMORY REQUIREMENTS

TABLE VII

8λ DIELECTRIC SPHERE: FILL TIME (TZ) AND LU
FACTORIZATION TIME (TLU)

Fig. 8. Cone-sphere radar target (all dimensions in centimeters).

TABLE VIII

CONE-SPHERE: MEMORY REQUIREMENTS

TABLE IX

CONE-SPHERE: FILL TIME (TZ) AND LU FACTORIZATION TIME (TLU)

9.5, 12.5, and 15.0 GHz for incident angles 0 ≤ θ ≤ 180
degrees, where θ = 0 is nose-on. The angular step size is
0.1◦, for a total of 1801 right-hand sides. Three surface meshes
were constructed, with a density of approximately ten edges
per wavelength at each frequency. This resulted in models
having 5 05 020, 9 60 084, and 13 71 720 triangles, and 7 57 530,
14 40 126, and 20 57 580 unknowns, respectively. For the MoM
problem, CFIE is used (α = 0.5) and τAC A = 10−4.

Table VIII summarizes the memory requirements MZ and
MLU for the single-level ACA and MLACA (L ≤ 3). MLACA
again produces significant gains in compression rate versus
ACA. Table IX summarizes the corresponding matrix fill times
TZ and LU factorization times TLU. We note that at 12.5 and
15.0 GHz, the TLU for each MLACA level is actually less than

Fig. 9. Cone-sphere HH-Pol RCS. (a) 9.5 GHz. (b) 12.5 GHz. (c) 15.0 GHz.

ACA. This is likely due to reduced communication overhead
needed to transmit the smaller MLACA-compressed blocks.
In Fig. 9, we compare the HH-polarized bistatic RCS obtained
from the single-level ACA and MLACA (L = 3) to the
results from our code Galaxy, which implements the body of
revolution moment method (MoM-BoR) approach [24]. The
comparison is excellent across all angles.

VI. CONCLUSION

In this article, the MLACA algorithm was applied to a
direct solution of the MoM linear system using LU fac-
torization. It was shown that through careful modification
of the original algorithm, the LU block updates and block-
RHS solution are carried out in rank-reduced form and
are very efficient. Through numerical experiments, it was
shown that the off-diagonal LU matrix blocks are highly
compressible using MLACA and that memory requirements
of the MLACA-compressed LU matrix scale approximately as
O(N4/3 log N), which is consistent with the complexity of the
single-level ACA. These experiments have also confirmed that
the MLACA retains the accuracy as the single-level ACA for
problems up to two million unknowns. The additional memory
savings afforded by MLACA are substantial, giving it the
potential to allow a direct solution of very large scattering and
radiation problems on modest consumer-level workstations,
as well as highly parallel enterprise and supercomputer-class
computer systems. The proposed algorithm is simple and

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 05,2020 at 23:59:13 UTC from IEEE Xplore. Restrictions apply.

GIBSON: EFFICIENT SOLUTION OF ELECTROMAGNETIC SCATTERING PROBLEMS 3823

straightforward to implement, and an excellent candidate for
implementation on GPUs.

REFERENCES

[1] W. C. Gibson, The Method of Moments in Electromagnetics, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2014.

[2] J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Amer. A,
Opt. Image Sci., vol. 52, no. 2, pp. 116–130, 1962.

[3] D. Klement, J. Preissner, and V. Stein, “Special problems in applying
the physical optics method for backscatter computations of complicated
objects,” IEEE Trans. Antennas Propag., vol. AP-36, no. 2, pp. 228–237,
Feb. 1988.

[4] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive inte-
gral method for solving large-scale electromagnetic scattering and radi-
ation problems,” Radio Sci., vol. 31, no. 5, pp. 1225–1251, Sep. 1996.

[5] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
Philadelphia, PA, USA: SIAM, 2003.

[6] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
J. Comput. Phys., vol. 135, no. 2, pp. 280–292, Aug. 1997.

[7] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method
for the wave equation: A pedestrian prescription,” IEEE Antennas
Propag. Mag., vol. 35, no. 3, pp. 7–12, Jun. 1993.

[8] J. Song, C.-C. Lu, and W. Cho Chew, “Multilevel fast multipole
algorithm for electromagnetic scattering by large complex objects,”
IEEE Trans. Antennas Propag., vol. 45, no. 10, pp. 1488–1493,
Oct. 1997.

[9] M. Bebendorf, “Approximation of boundary element matrices,” Numer.
Math., vol. 86, no. 4, pp. 565–589, Oct. 2000.

[10] K. Zhao, M. Vouvakis, and J.-F. Lee, “The adaptive cross approxi-
mation algorithm for accelerated method of moments computations of
EMC problems,” IEEE Trans. Electromagn. Compat., vol. 47, no. 4,
pp. 763–773, Nov. 2005.

[11] J. Shaeffer, “Direct solve of electrically large integral equations for
problem sizes to 1 M unknowns,” IEEE Trans. Antennas Propag.,
vol. 56, no. 8, pp. 2306–2313, Aug. 2008.

[12] E. Michielssen and A. Boag, “A multilevel matrix decompo-
sition algorithm for analyzing scattering from large structures,”
IEEE Trans. Antennas Propag., vol. 44, no. 8, pp. 1086–1093,
Aug. 1996.

[13] J. M. Tamayo, A. Heldring, and J. M. Rius, “Multilevel adaptive cross
approximation (MLACA),” IEEE Trans. Antennas Propag., vol. 59,
no. 12, pp. 4600–4608, Dec. 2011.

[14] Y. Liu, H. Guo, and E. Michielssen, “An HSS matrix-inspired butterfly-
based direct solver for analyzing scattering from two-dimensional
objects,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1179–1183,
2017.

[15] H. Guo, Y. Liu, J. Hu, and E. Michielssen, “A butterfly-based direct
integral-equation solver using hierarchical LU factorization for analyzing
scattering from electrically large conducting objects,” IEEE Trans.
Antennas Propag., vol. 65, no. 9, pp. 4742–4750, Sep. 2017.

[16] H. Guo, Y. Liu, J. Hu, and E. Michielssen, “A butterfly-based direct
solver using hierarchical LU factorization for Poggio-Miller-Chang-
Harrington-Wu-Tsai equations,” Microw. Opt. Technol. Lett., vol. 60,
no. 6, pp. 1381–1387, Jun. 2018.

[17] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert,
“Randomized algorithms for the low-rank approximation of matrices,”
Proc. Nat. Acad. Sci. USA, vol. 104, pp. 20167–20172, Dec. 2007.

[18] P.-G. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm
for the decomposition of matrices,” Appl. Comput. Harmon. Anal.,
vol. 30, no. 1, pp. 47–68, Jan. 2011.

[19] M. Bebendorf and S. Kunis, “Recompression techniques for adap-
tive cross approximation,” J. Integral Equ. Appl., vol. 21, no. 3,
pp. 331–357, Sep. 2009.

[20] E. Anderson et al., LAPACK Users’ Guide, 3rd ed. Philadelphia, PA,
USA: SIAM, 1999.

[21] X. Chen, C. Gu, A. Heldring, Z. Li, and Q. Cao, “Error bound of
the multilevel adaptive cross approximation (MLACA),” IEEE Trans.
Antennas Propag., vol. 64, no. 1, pp. 374–378, Jan. 2016.

[22] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by
surfaces of arbitrary shape,” IEEE Trans. Antennas Propag., vol. AP-30,
no. 3, pp. 409–418, May 1982.

[23] G. T. Ruck, Ed., Radar Cross Section Handbook. New York, NY, USA:
Plenum, 1970.

[24] R. Mautz and R. Harrington, “H-field, E-field and combined solutions for
bodies of revolution,” Rome Air Develop. Center, Griffiss AFB, Rome,
NY, USA, Tech. Rep. RADC-TR-77-109, Mar. 1977.

Walton C. Gibson was born in Birmingham, AL,
USA, on December 9, 1975. He received the B.S.
degree in electrical engineering from Auburn Uni-
versity, Auburn, AL, USA, in 1996 and the M.S.
degree in electrical engineering from the University
of Illinois at Urbana–Champaign, Champaign, IL,
USA, in 1998.

He has authored lucernhammer, an industry-
standard radar cross section code and The Method
of Moments in Electromagnetics, a textbook geared
to graduate-level courses in computational electro-

magnetics and the research community. His professional interests include
electromagnetic theory, computational electromagnetics, moment methods,
numerical algorithms, and parallel computing.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 05,2020 at 23:59:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

