

Adaptive Cross ApproximationSolver in the Serenity Radar Cross Section Prediction Code

- Serenity is a high-performance, full-wave radar cross section (RCS) solver employing the Method of Moments (MoM)
 - Solves the Surface Integral Equations (SIE) of scattering
 - Bounding surfaces of conductors and dielectric interfaces are meshed.
 - Objects having conducting (PEC) and bulk dielectric parts with junctions are fully supported. Dielectrics can be lossy.
 - Serenity enforces the EFIE on open conductors, CFIE on closed conductors, and PMCHWT on dielectrics.
 - Direct Block-LU decomposition of matrix in compressed form
 - Single-Level ACA and Multi-Level ACA (MLACA) Algorithms Supported.
 - Shared Memory Version
 - Parallelized via Threads, BLAS Level 3 operations accelerated via Intel Math Kernel Library (MKL) (CPU version), or NVIDIA cuBLAS (GPU version).
 - Distributed Memory (MPI) Version
 - Hybrid Approach, Parallelized via Threads on separate processes. Intel MKL used for all BLAS Level 3 operations.
 - Linux and Windows versions of Serenity are available.

Serenity Overview (2)

- Developer: Walton C. Gibson
 - Industry expert in the Method of Moments applied to Electromagnetic Problems
 - Author of <u>The Method of Moments in</u> <u>Electromagnetics</u>, 1st and 2nd Edition
- Serenity Version History
 - v. 1.0 (2003): Written in C, supporting conducting objects and full matrix approach.
 - v. 2.0 (2012): Complete re-write in C++, full support for conductors and dielectrics.
 - v. 2.1 (2015): Added high-performance CPU and GPUaccelerated Adaptive Cross Approximation (ACA) solvers.
 - v. 2.2 (2019): Added high-performance CPU and GPUaccelerated Multi-Level Adaptive Cross Approximation (MLACA) solvers.

Single-Level ACA Solver Overview

- As the MoM system matrix is dense, a full matrix approach is not tractable for electrically large problems
 - In-core solutions are limited to a few tens of thousands of unknowns
 - on current 2020 server-class systems.
- The Serenity Single-Level ACA solver groups basis functions into spatially local groups, breaking up the system matrix into block form.
 - Diagonal blocks due to interactions within a group are computed and stored as usual.
 - Rank-deficient off-diagonal blocks are computed and stored in compressed outer-product form on the fly using the ACA algorithm.
 - The ACA algorithm uses only selected rows and columns of each block a significant portion of the matrix is not computed explicitly.

- Compression of 98% or more versus the full matrix approach are possible on electrically larger problems.
 - Consider N = 500000, in single precision complex:
 - Full matrix: 1862 GB RAM
 - ACA with 98% compression: 37 GB RAM (solvable in-core!)
 - Memory Complexity is approximately O(N^{4/3}logN)
- Block matrix is LU-factored in compressed form directly
 - LU factors also compressible via ACA
 - Can be done very fast using accelerated BLAS Level 3 functions
 - Intel MKL BLAS (SSE/AVX optimized for Intel processors)
 - NVIDIA CUDA BLAS (cuBLAS) on NVIDIA GPUs
 - Direct solve via LU decomposition eliminates problems caused in iterative solvers due to poorly conditioned system matrix
- The thousands of right-hand sides in a scattering problem can be solved simultaneously and efficiently
 - Right-hand side matrix is compressible in block form via ACA
 - Solution (current) matrix also compressible in block form via ACA
 - Nyquist sampled far fields can be computed very quickly

Multi-Level ACA Solver Overview

- In the Multi-Level ACA (MLACA), Single-Level ACA groups are made larger and hierarchically subdivided into smaller, spatially local groups via binary-tree.
- Block matrix is again LU-factored in compressed form directly
- Butterfly, multi-level compression [1] applied to matrix blocks.
 - Diagonal *and* off-diagonal blocks are compressed in MLACA.
- MLACA yields much better compression than Single-Level ACA.
 - Memory Complexity remains approximately O(N^{4/3}logN)
 - Extra compression is at the expense of more run time
 - Run-time increases are typically modest.
 - Accuracy is not adversely impacted.

f_0	N	A	CA	L	= 1	L	=2	L	= 3	L	=4	L	=5
		$M_{\mathbf{Z}}$	$M_{\rm LU}$	$M_{\mathbf{Z}}$	$M_{\rm LU}$	$M_{\mathbf{Z}}$	$M_{\rm LU}$	$M_{\mathbf{Z}}$	$M_{\rm LU}$	$M_{\mathbf{Z}}$	$M_{\rm LU}$	$M_{\mathbf{Z}}$	$M_{\rm LU}$
12.0 14.0 16.0 20.0 24.0	1213896 1645768 1799000 2843288 5022318	151 222 245 429 884	184 284 328 666 1841	97 144 161 293 634	124 196 231 491 1156	66 98 112 211 473	88 141 170 372 888	49 74 85 165 377	67 108 133 299 720	39 59 69 137 316	55 89 110 253 608	34 52 61 125 291	49 80 101 234 554

Example: Storage (M_z and M_{LU} in GB) Versus # of Unknowns *N* for a Reentry Vehicle With Dielectric Nose, Comparing Single-Level ACA (L=0) to MLACA for Levels L= 1 to 5.

[1] Gibson, W. C. "Efficient Solution of Electromagnetic Scattering Problems Using Multilevel Adaptive Cross Approximation (MLACA) and LU Factorization," *IEEE Trans. Antennas Propagat.,* vol. 68, pp 3815-3823, May 2020.

CPU vs. GPU-accelerated ACA Solver

- Comparison executed on a Dell Precision T7900 Workstation
 - Dual, 12-core Intel Xeon CPUs (E5-2690 v3), 256 GB RAM
- CPU ACA solver uses Intel Math Kernel Library MKL, 2019 Version
 - All Operations Performed on CPU
- GPU ACA Solver uses NVIDIA CUDA 10.0 and 2 GTX 1080 Ti GPUs
 - Single and Multi-GPU configurations (pictured) are supported by Serenity
 - Matrix Filling and Factorization Performed on GPU, Compression on CPU
- GeForce GTX 1080 Ti released in March, 2017
 - Pascal Architecture, 3584 CUDA Cores, 12 GB of GPU Memory
 - ~10 TFlops (single precision)

EVA GeForce GTX 1080 Ti GPU

Multi-GPU (x4) Configuration

CPU vs. GPU-accelerated ACA Solver (2)

- Compare matrix fill and factor times of PEC spheres of increasing size.
- 24 CPU threads are used.
- Using GPUs, matrix fill is about ~3 times faster than using the CPU.
- Using GPUs, LU factorization is ~5-7 times faster than using the CPU.
 - Speed increase of the GPUs grows with problem size.
- Adding additional GPUs will improve factorization time significantly
 - If the user adds additional GPUs, Serenity can utilize them right away

Test Case	N	M _z (GB)	T _z (CPU)	T _z (2x GPU)	M _{LU} (GB)	T _{LU} (CPU)	T _{LU} (2x GPU)
4λ PEC Sphere	122880	6	53	19 (2.8x)	7	213	41 (5.2x)
8λ PEC Sphere	491520	30	291	90 (3.2x)	37	3935	562 (7.0x)
16λ PEC Sphere	1966080	174	2211	634 (3.4x)	248	133297	21485 (6.2x)

Example: UT Austin PEC Almond (1/3)

- Exterior dimensions identical to NASA Almond from the EMCC benchmarks¹
- Serenity uses a single-level ACA
 - Target ACA group size: 2500
- UT Austin test article 3D printed from resin and coated with conducting paint
- RCS computed and compared at 2.58, 5.125, 7.0, and 10.25 GHz
- A single facet model with 46984 triangles used at all frequencies.
- CFIE is used on all interfaces.
- ACA results compared against measurements in UT Austin CEM Benchmark²

Frequency (GHz)	Ν _T	Ν	M _z (GB)	C _z (%)	M _{LU} (GB)	C _{LU} (%)
10.25	46984	70476	2.54	93.1	2.62	93

Number of Triangles (N_T), Unknowns (N), MoM Matrix Storage (M_Z) and Percent Compression (C_Z), LU Matrix Storage (M_{LU}) and Percent Compression (C_{LU}),

1. A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, "Benchmark radar targets for the validation of computational electromagnetics programs," *IEEE Antennas Propagat. Magazine*, vol. 35, pp. 84–89, February 1993.

2. J. T. Kelley, D. A. Chamulak, C. C. Courtney, and A. E. Yilmaz, "Rye canyon radar cross-section measurements of benchmark almond targets," *IEEE Antennas Propagat. Mag.*, vol. 52, pp. 120–135, February 2020.

Example: UT Austin PEC Almond (2/3)

Example: UT Austin PEC Almond (3/3)

Electromagnetics Software Solutions

- Exterior dimensions identical to NASA Almond from the EMCC benchmarks¹
- Serenity uses a single-level ACA
 - Target ACA group size: 2500
- UT Austin test article 3D printed from resin having permittivity e ~ 3 j.1
- RCS computed and compared at 2.58, 5.125, 7.0, and 10.25 GHz
- A single facet model with 46984 triangles used at all frequencies.
- **PMCHWT** is used on all interfaces.
- ACA results compared against measurements in UT Austin CEM Benchmark²

Frequency (GHz)	N _T	Ν	M _z (GB)	C _z (%)	M _{LU} (GB)	C _{LU} (%)
10.25	46984	140952	8.53	94.2	9.44	93.6

Number of Triangles (N_T), Unknowns (N), MoM Matrix Storage (M_Z) and Percent Compression (C_Z), LU Matrix Storage (M_{LU}) and Percent Compression (C_{LU}),

1. A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, "Benchmark radar targets for the validation of computational electromagnetics programs," *IEEE Antennas Propagat. Magazine*, vol. 35, pp. 84–89, February 1993.

2. J. T. Kelley, D. A. Chamulak, C. C. Courtney, and A. E. Yilmaz, "Measurements of non-metallic targets for the Austin RCS benchmark suite," in *Proc. Ant. Meas. Tech. Assoc. (AMTA) Symp*, 2019.

Example: UT Austin Solid Dielectric Resin Almond (2/3)

Example: UT Austin Solid Dielectric Resin Almond (3/3)

Example: Reentry Vehicle With Dielectric Nose

- RCS computed at 12, 14, 16, 20 and 24 GHz
- Serenity uses a 5-Level MLACA
 - Target ACA group size: 10000
- MLACA results compared against *Galaxy* Body-of-Revolution MoM Solver

Frequency (GHz)	Ν _T	Ν	M _z (GB)	C _z (%)	M _{LU} (GB)	C _{LU} (%)
5 - 6	199780	307952	~5		~6	
12	753780	1213896	34	99.69	49	99.55
14	1017940	1645768	52	99.74	80	99.61
16	1086164	1799000	61	99.74	101	99.58
20	1702392	2843288	125	99.79	234	99.61
24	3110440	5022318	291	99.85	554	99.70

Number of Triangles (N_T), Unknowns (N), MoM Matrix Storage (M_Z) and Percent Compression (C_Z), LU Matrix Storage (M_{LU}) and Percent Compression (C_{LU}),

Example: Reentry Vehicle With Dielectric Nose (2)

-10

-15

-20

-25

-30

-35

-40

-10

180

150

Range-Angle Intensity (RAI) using 5-6 GHz data, results are nearly indistingushable in both polarizations.

MoM-BOR, HH-Pol Range-Angle Intensity

Electromagnetics Software Solutions

Example: Reentry Vehicle With Dielectric Nose (3)

Comparison of VV-Pol RCS at 14, 16, 20 and 24.0 GHz.

Electromagnetics Software Solutions

Example: Business Jet

- RCS computed at 0.6, 1.2, 1.8 and 2.4 GHz
- Serenity uses a 4-Level MLACA
 - Target ACA group size: 10000
- MLACA results compared against *lucernhammer MT*, our high-frequency PTD/SBR-based Solver

Frequency (GHz)	N _T	Ν	M _z (GB)	C _z (%)	M _{LU} (GB)	C _{LU} (%)
0.6	430392	645588	18	99.43	22	99.28
1.2	1606124	2409186	108	99.75	166	99.61
1.8	3555630	5333445	365	99.83	673	99.68
2.4	6039472	9059208	872	99.86	1746	99.71

Number of Triangles (N_T), Unknowns (N), MoM Matrix Storage (M_Z) and Percent Compression (C_Z), LU Matrix Storage (M_{LU}) and Percent Compression (C_{LU}),

Electromagnetics Software Solutions

Example: Business Jet (2)

Electromagnetics Software Solutions

Example: Business Jet (3)

Electromagnetics Software Solutions